

The Interstate AI Policy Playbook

A playbook for responsible AI diffusion and operational frameworks—from **policy accelerators** and **compute zones** to coordinated basic **research labs** and **talent programs**

Cross-National &
Small Island Developing
States AI Strategy

Africa Edition 2025
Equiano Institute

Contents

1	National Readiness & Strategies Policy	4
1.1	African AI Compute Infrastructure	5
2	Infrastructure Capacity	6
2.1	NSCZ Program: National Sustainable Compute Zones	6
2.2	STARS Program: Structural Transformation of AI and Rural Spaces	7
2.3	ELSI Program: Ethical, Legal, and Social Implications Framework	7
2.4	PART Program: Preparedness, Adaptation, Resilience, and Transition	8
3	Regional Capacity: Coordinated Response for AI	9
4	Policy Capacity: Responses to Agentic & Industrial AI	10
4.1	FAIR Policy: Frontier AI Response Policy	11

Executive Summary

Africa has seen a remarkable rise in national AI strategies, with 15 countries formally adopting frameworks¹. The African Union's Continental AI Strategy stands out for its foresight, anticipating continental coordination, regional harmonization, and ethical governance needs. It sets a benchmark for pan-African AI development, offering a vision that transcends individual national agendas. Despite strategic proliferation, implementation remains a challenge. Most available strategies emphasize infrastructure readiness, talent pipelines, and regulatory aspirations, yet provide limited guidance on societal resilience, capacity engineering, resource constraints and execution.

AU Strategy, 2025

Towards Diffusion Readiness

AI adoption exhibits a pronounced global divide: countries in the Global North record adoption rates roughly double those in the Global South, with averages around 23% versus 13% of the working-age population using AI tools respectively, and the gap is most acute in nations where GDP per capita is below \$20,000². Adoption is lowest in parts of Sub-Saharan Africa and South Asia, where usage often remains below 10%, and highest in countries such as the UAE and Singapore with sustained investment in digital infrastructure. This uneven diffusion reflects disparities in foundational **building blocks**: reliable electricity, data centres, internet connectivity, and digital and AI skills, as well as language accessibility that determines who can use and shape AI systems³.

Africa's Pacing Problem

African AI governance confronts a structural *pacing problem*: policy institutions designed for stability must now govern technologies that compound exponentially. **The Malabo Convention** on Cybersecurity required nine years to enter force (2014-2023)—a timeline that would render any AI framework obsolete before implementation.⁴ This Policy Playbook is a **pacing-problem** response to contemporary AI strategies: rather than attempting comprehensive regulation of rapidly evolving systems, it focuses on building institutional capacity for *continuous adaptation*—governance mechanisms that learn and adjust as fast as the technologies they govern.⁵

The Playbook: Towards Action Oriented Resilience

Africa's AI strategies articulate ambitious aspirations, but vision alone is insufficient. The playbook bridges the gap between strategy and action, translating AU foresight into operational pathways while minimizing resource duplication and enhancing policy adoption. By emphasizing capacity engineering, addressing diffusion risks, and prioritizing societal resilience, Africa can design, deploy, and govern AI systems according to its own priorities, ensuring inclusive and transformative impact across the continent.

The distance between policy document and operational reality has consumed countless continental strategies. This Playbook acknowledges that constraint explicitly: it prioritizes speed of learning over comprehensiveness of initial design.

This playbook bridges strategic vision and practical capacity. By consolidating AU foresight with continental coordination, it addresses the urgent pacing problem while laying the groundwork for societal resilience. Africa's AI future depends not on passive readiness but on active capacity: the ability to govern, deploy, and benefit from AI systems on African terms. Detailed programmatic interventions will be elaborated in subsequent reports, ensuring that this playbook functions as a living roadmap rather than a prescriptive blueprint.

¹Carnegie Endowment, 2025

²Microsoft AI Diffusion Report 2025 (AI Economy Institute)

³Digital Watch Observatory

⁴EJIL:Talk! (2023): *The Malabo Convention's nine-year ratification lag demonstrates how traditional policy cycles cannot match technological acceleration.*

⁵Programs include policy protocols, compute zones, talent mobility, market instruments.

National AI Strategies and Readiness

By 2025, AI governance moved from a niche technical topic to a central pillar of digital policy in global and African policy circles. At the multilateral level, the African Union's *Continental AI Strategy* (adopted in 2024) began to filter into national planning processes, while UNESCO's AI ethics framework and capacity-building programs provided reference points for domestic legislation and institutional design. Major partners—including the EU, UN agencies, and regional development banks—started to condition digital investment on the presence of credible national AI strategies or readiness plans⁶, aiming to harness AI for socioeconomic growth and digital transformation⁷. However, readiness is uneven across the continent: talent shortages, limited digital infrastructure, scarce local data, and nascent governance frameworks pose significant implementation challenges

What This Playbook Does

Africa's Industrial AI Policy Playbook articulates four intervention layers, each addressing specific governance failures:

Infrastructure Capacity

Foundational systems including human capital development, ethical frameworks, and preparedness mechanisms. These establish material and institutional prerequisites for endogenous AI development.

Regional Innovation

Coordinated research infrastructure that pools fragmented capacity for transformative research at a regional scale.

Instrumental Capacity

Tangible resources including sustainable compute infrastructure, evidence-based talent retention strategies, and mechanisms that redirect AI toward high-social-value applications in agriculture and public health.

Policy Capacity

Rapid-cycle governance mechanisms that transform institutions from reactive regulation to adaptive learning systems.

Each layer operates independently but achieves maximum impact through coordination.

What This Document Is Not

This Playbook does *not* provide:

National strategy blueprints

Individual nations require context-specific strategies addressing local institutional capacities, political economies, and development priorities. This document offers modular instruments that national strategies can incorporate selectively.

Comprehensive AI regulation

Traditional regulatory frameworks (algorithmic transparency, data protection, liability regimes) remain necessary. This Playbook focuses on the *governance of governance*—institutional mechanisms that enable effective regulation despite technological velocity.

Each suggestion is meant to operate at a regionally in African small island developing states and member states.

⁶See Carnegie Endowment, “Understanding Africa’s AI Governance Landscape,” 2025,

⁷Global Center on AI Governance, “African countries are racing to create AI strategies,” 2025

1 National Readiness & Strategies Policy

Instrumental capacity refers to the tangible resources—computational power, technical talent, market structures, and digital infrastructure—required to translate policy ambitions into operational systems. Without these material foundations, even well-designed policies remain aspirational. Policy circles converged around a small set of themes: data governance and privacy, skills and talent development, innovation ecosystems, and basic safety or ethics guidelines for public-sector AI use.

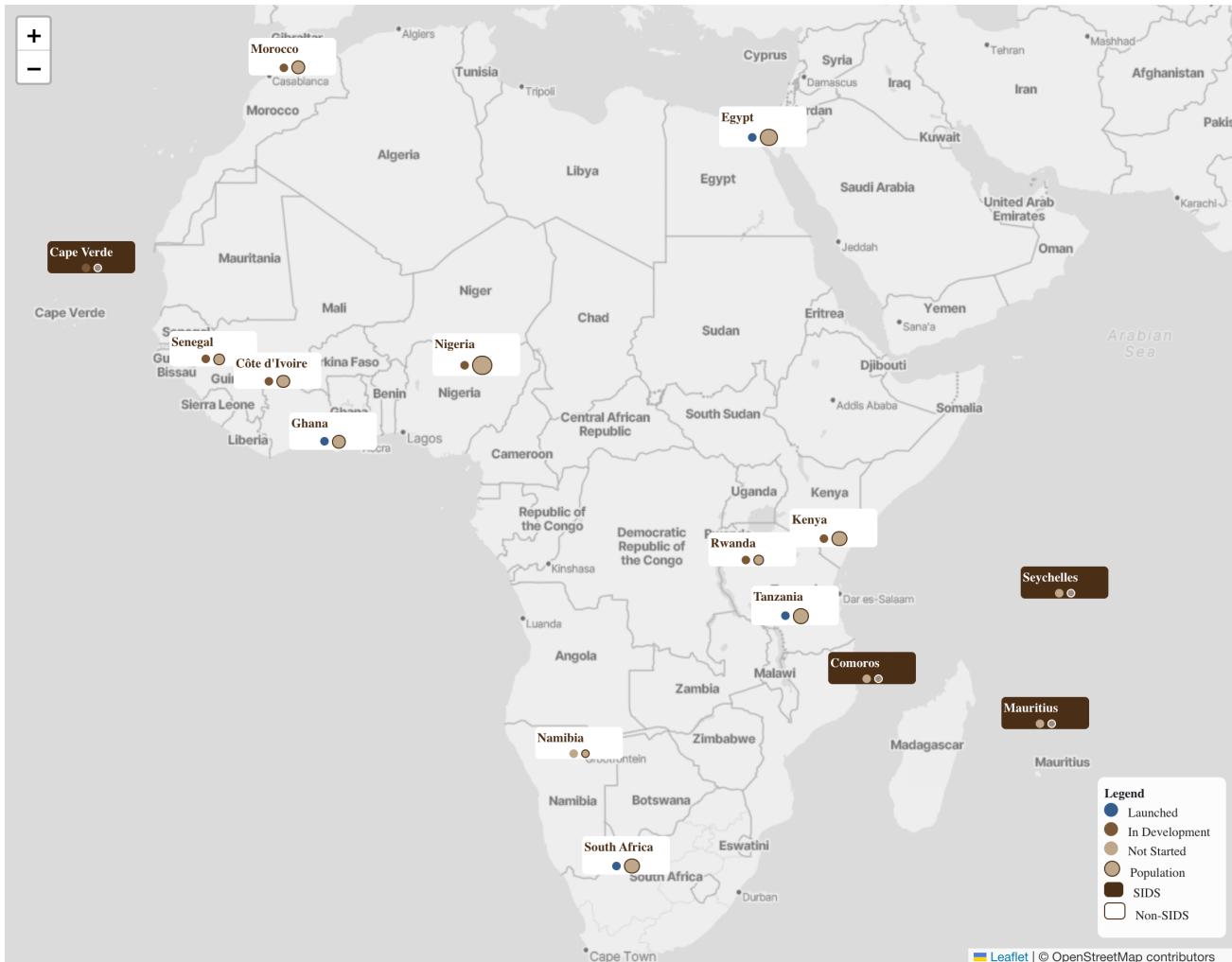


Figure 1: Map of AI strategies and readiness across Africa (2025).

However, the **state of national strategies and readiness programs in 2025 remained highly uneven**:

- **Coverage gaps across core domains.** Many strategies emphasised innovation and sector applications while under-specifying compute infrastructure, evaluation mechanisms, and regional coordination. Few countries articulated concrete plans for sovereign or shared compute, or for systematic monitoring and evaluation of AI deployments.
- **Institutional readiness lagged behind rhetoric.** Even where strategies existed on paper, dedicated AI units, ethics review processes, and budgeted implementation programs were often missing or nascent. Readiness programs tended to focus on skills workshops and pilot projects rather than enduring institutions.
- **Emerging leaders and policy laboratories.** A small set of countries (for example Kenya, Mauritius, Rwanda, South Africa, Egypt) began to act as de facto regional policy laboratories, experimenting with draft AI bills, data protection enforcement, regulatory sandboxes, and targeted talent initiatives.

The map above shows these 2025 conditions as a baseline. The policy playbook considers national strategy readiness plans alongside Small Island Developing States(SIDS) to convert fragmented, readiness activities into a coherent, scalable architecture anchored in African institutions.

1.1 African AI Compute Infrastructure

The following cartogram presents a comparative view of African AI compute infrastructure in 2023–2024, linking data-centre concentration with national AI strategy status and relative GPU access. Compute capacity is strongly concentrated in a small number of countries, led by South Africa, with Nigeria and Kenya emerging as regional hubs. While several states have adopted or are developing AI strategies, policy readiness often outpaces practical access to advanced compute, particularly GPUs.

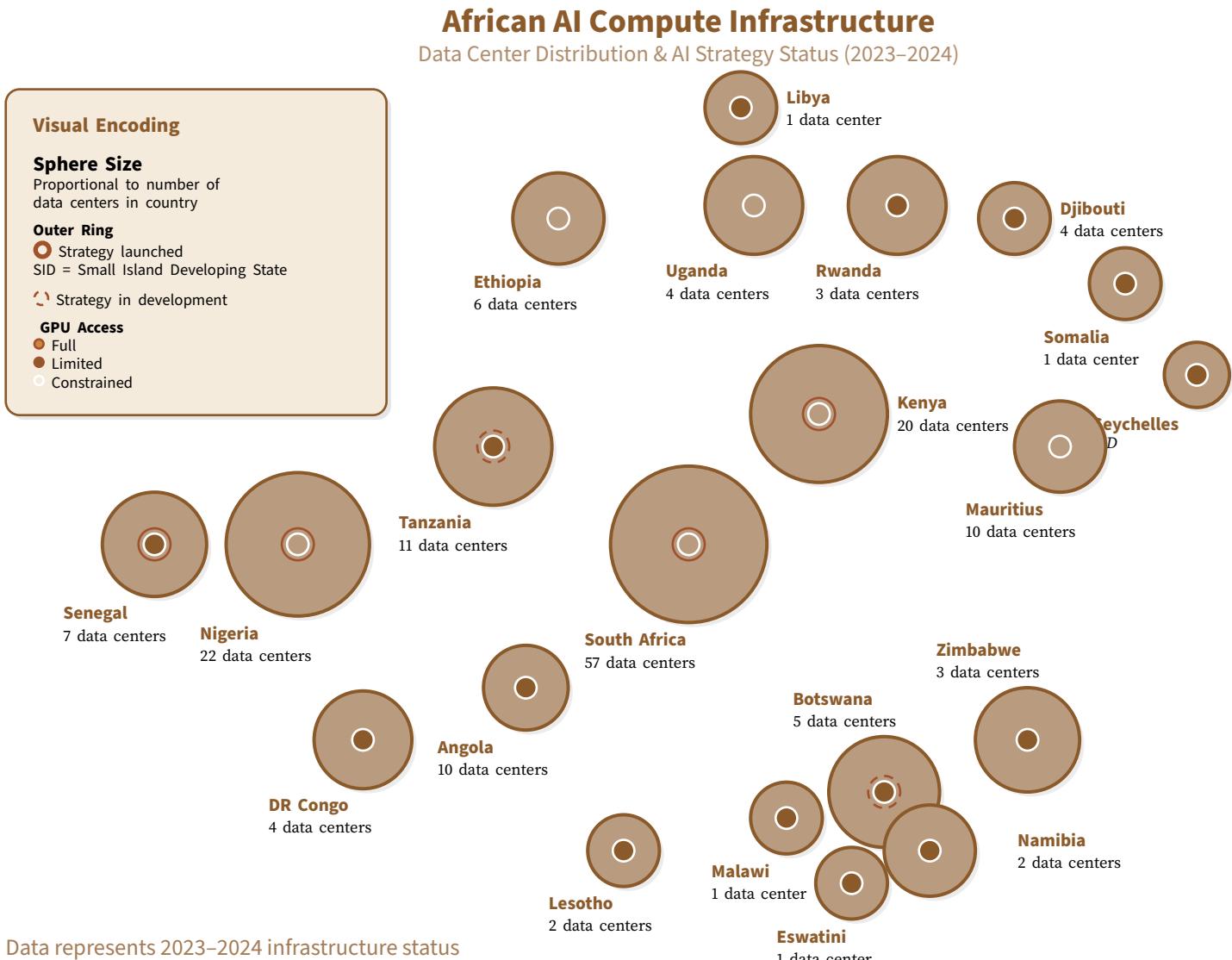


Figure 2: African AI compute infrastructure and strategy status.

The landscape reflects a pattern of early consolidation rather than broad diffusion. National strategies signal intent, but infrastructure depth and access constraints remain decisive. Without deliberate coordination and sustained investment, current disparities in AI capability are likely to deepen rather than converge.

2 Infrastructure Capacity

This section outlines the core infrastructural requirements for Africa's AI trajectory. It focuses on three pillars: (1) human capital (STARS) and research capacity, (2) resilience and preparedness (PART) infrastructure, and (3) ethics and social (ELSI) implications of AI development. The infrastructural layer determines what is technically possible. Without deliberate investment in computational capacity, data systems, and oversight mechanisms, emerging economies risk becoming a passive consumer of AI systems without state capacity to resource AI itself alongside public service priorities. These proposals establish the material and institutional foundations for endogenous and exogenous AI development.

Coordination Fractures

Uneven infrastructure, talent concentration, and resource constraints—particularly in energy, water, and resourcesm security—may limit the pace and equity of AI deployment. Coordinated capacity-building can support responsible AI deployment and local governance structures⁸. AI strategies must account for the continent's digital divide: large offline populations, under-resourced rural areas, and limited access to higher education and technical training.

Individual nations implementing fragments of this framework will achieve modest gains.

Coordinated continental implementation unlocks transformative potential—compute zones achieve economies of scale, lab pool research capacity, talent programs generate policy learning, and industrial policy creates markets large enough to shape global AI development.

2.1 NSCZ Program: National Sustainable Compute Zones

Summary

Establish dedicated zones integrating AI compute infrastructure with renewable energy generation, creating sovereign computational capacity while advancing climate goals through co-located data centers and clean energy facilities.

Problem

AI development requires massive computational resources that Africa currently purchases from exogenous cloud providers, creates dependencies over strategic infrastructure. Expanding compute infrastructure risks significant water, climate and electricity risks and emissions unless integrated with sustainable methods.

Solution

Multi-national sustainable compute zones in Africa, each serving regional clusters would:

- Co-locate data centers with solar, wind, or hydro-electric generation facilities
- Operate on a "pure play" open access policies and models: focus exclusively on compute provision rather than bundling with proprietary platforms

Policy Justification

Computational sovereignty is becoming vital for national security and economic strength. By controlling their own compute infrastructure, countries can shape data governance, algorithm design, and technology use. If Africa links compute hubs to renewable energy, it can grow its tech capacity and lead on climate action. A multi-national model brings scale and regional cooperation, while a pure-play approach avoids vendor lock-in and keeps pace with changing AI paradigms.

⁸Brookings Institution, 2025

2.2 STARS Program: Structural Transformation of AI and Rural Spaces

Summary

Structural Transformation of AI and Rural Spaces is a 9-15 month mentorship program for early-career AI researchers in low-income countries that provides research guidance, technical training, and networking. Work on coordinated research programs and shared tasks⁹, and empirical research on scientific careers documented in Matt Clancy's *New Things Under the Sun*¹⁰. STARS aims to examine the structural challenges facing artificial intelligence in Africa¹¹ and support policy-makers in addressing them, with the aim of improving productivity while reducing negative impacts and strengthening the well-being of affected communities.

65%

Problem

Building local capacity for AI policy, innovation, and adoption is critical, but is constrained by infrastructure deficits, data, workforce, and regulatory shortages.¹²

Policy Justification

Despite small sample limitations, the large citation effect and demonstrated demand justify continued investment in high-touch mentorship for building research capacity in low-income countries.

2.3 ELSI Program: Ethical, Legal, and Social Implications Framework

Summary

Establish a continent-wide research and policy network dedicated to anticipating and addressing the ethical, legal, and social implications of AI deployment in African contexts before harmful precedents solidify.

Problem

AI is being deployed across sectors, but local ethics, laws, and social norms are crucial. The genomics-based ELSI model has yet to be adapted for African AI, risking reactive adoption that addresses harms only after they arise.

Solution

Create networked ELSI centers across key African universities and research institutions, funded through a combination of continental development banks, bilateral partnerships, and philan-

Solution

Propensity score matching on 31 participant-finalist pairs finds participants gain 6 additional citations annually versus 4.5 for controls—a 133% increase in research impact. Mentors are drawn from current faculty; fellows return to home institutions, creating sustainable local capacity.

thropic sources. These centers would:

- Conduct anticipatory research on AI's impacts across diverse communities
- Develop grounded ethical frameworks that reflect contextual elements
- Engage communities, policymakers, and technologists in policy briefs

The program would operate on a distributed model, with each center specializing in regional contexts while contributing to a shared knowledge commons.

Policy Justification

The genomics ELSI framework demonstrated that early, systematic attention to societal implications can shape technology development trajectories toward socially beneficial outcomes. A coordinated ELSI program establishes Africa as a site of ethical leadership rather than passive adoption, while building indigenous expertise in AI governance.

⁹Common task method and Coordinated Research Programs

¹⁰Clancy

¹¹Schreiber et al. (2022): Structural Transformation through African Academic Research Support

¹²Based on current World Bank designations. Approximately 65% of the population is under the age of 35.

2.4 PART Program: Preparedness, Adaptation, Resilience, and Transition

Summary

Build institutional capacity for managing AI-driven disruptions through dedicated funding mechanisms that support infrastructure for responsible diffusion, adaptation strategies, and containment protocols for high-risk applications.

Problem

African nations lack dedicated funding streams and institutional mechanisms for managing AI-related transitions and risks. The continent faces simultaneous challenges: preparing for beneficial AI adoption, adapting existing institutions to AI-enabled systems, building resilience against AI-driven disruptions, and managing transitions in labor markets and governance structures. Without coordinated investment, these challenges will be addressed piecemeal, inefficiently, and inequitably.

Solution

Establish a multilateral fund managed by African

Union institutions, with three operational components:

1. **Diffusion Infrastructure:** Support responsible deployment of proven AI systems in public goods sectors (agriculture, epidemiology, education), emphasizing interoperability, local adaptation, and knowledge transfer
2. **Containment Protocols:** Develop biosafety-level equivalent frameworks for high-risk AI applications, including secure development environments and staged deployment procedures
3. **Transition Support:** Fund workforce retraining, institutional capacity building, and social safety nets for communities affected by automation

Policy Justification

A dedicated fund signals continental seriousness about AI governance, attracts international partnership, and ensures that transition costs are managed equitably rather than falling disproportionately on vulnerable populations. The containment component addresses emerging biosecurity and dual-use concerns before they crystallize into crises.

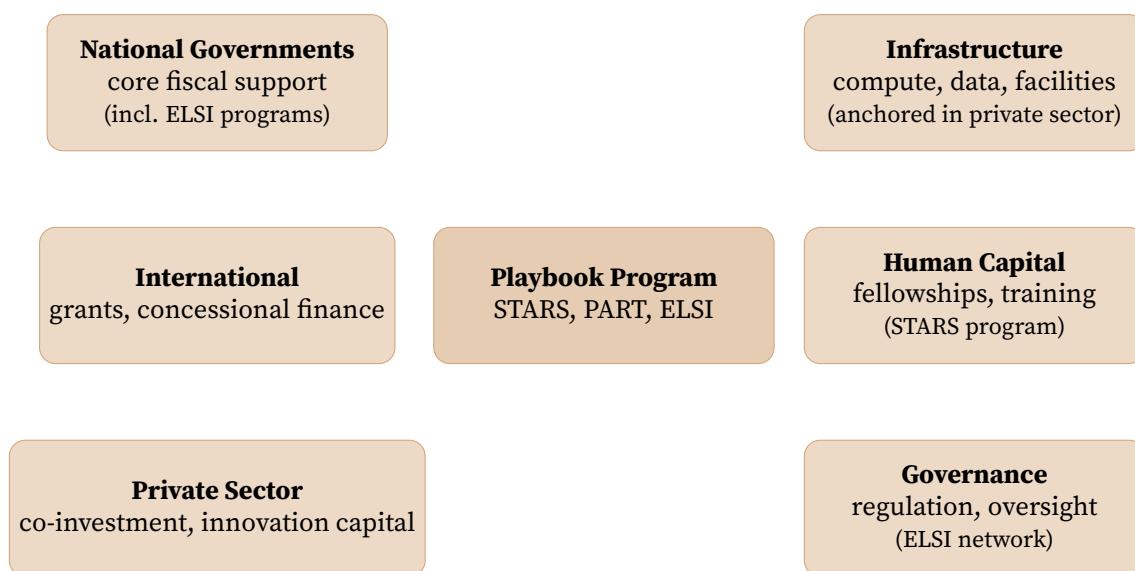


Figure 3: Indicative funding architecture: pooled "Playbook Program Facility" connecting public, international, and private sources to infrastructure, talent (STARS), and governance/ethics (ELSI) programs.

3 Regional Capacity: Coordinated Response for AI

Innovation capacity determines whether Africa develops indigenous AI capabilities or remains dependent on imported systems. These proposals create infrastructure for innovation that leverages regional coordination and diversity. Coordinated research programs¹³ are particularly important in African contexts, where fragmented funding, small research teams, and uneven institutional capacity make it difficult to sustain long-horizon, multi-country projects without deliberate orchestration.

A-Labs: Applied Innovation Zones

Multi-national innovation zones combining compute, manufacturing, and renewable infrastructure

Each zone specializes (agriculture, health, finance, energy) with open-access policies requiring innovations be deployable across Africa. Achieves economies of scale impossible for individual nations while distributing regional benefits.^a

Distributed infrastructure prevents concentration while enabling critical mass; specialization grounds AI in concrete problems

B-Labs: Basic Research for Moonshots

High-risk, high-reward basic research funding for transformative AI breakthroughs

5-7 year funding horizons for fundamental questions (novel architectures, learning theory, AI cognition) without predetermined applications. Accepts high failure rates as intrinsic to breakthrough research.^b

Transformative innovations emerge from exploration, not incremental improvement. Provides institutional space for intellectual risk-taking that applied research cultures systematically discourage

C-Labs: Cross-National Consortia

Distributed research networks linking multiple African universities with international partners

Each consortium addresses major challenges requiring sustained effort (multilingual NLP, disease surveillance, climate adaptation). Governance ensures African intellectual leadership and equitable benefit distribution.^c

Pools fragmented capacity while maintaining distributed participation. Avoids asymmetric partnerships that extract value without building enduring capacity

Diffusion Labs: Field-Testing & Evaluation

Rigorous empirical evaluation of AI deployments across African contexts

Conducts randomized trials, implementation science, and harm detection for AI systems in education, agriculture, healthcare. Partners with governments to build evaluation into deployment from inception.^d

Most AI policy proceeds on untested assumptions. Systematic evaluation positions African institutions as knowledge producers while protecting populations from ineffective or harmful systems

^aSTAARS model demonstrates 133% citation increase via regional collaboration

^bBasic research ROI: \$9.5-\$35 per dollar vs. \$2-5 for applied research

^cLocal collaboration increases cross-disciplinary learning by 67%

^dEvidence-based policy prevents \$97.9B in wasted deployment costs

¹³See Renaissance Philanthropy, *Coordinated Research Programs Playbook*.

4 Policy Capacity: Responses to Agentic & Industrial AI

African AI governance operates on year-long cycles while algorithms evolve monthly. Traditional institutions—designed for stability—cannot match exponential technological change.¹⁴ ¹⁵ ¹⁶ The Malabo Convention required nine years¹⁷ to enter into force (2014-2023), a lag that left governance frameworks obsolete before implementation.¹⁸ This institutional velocity mismatch creates permanent governance gaps. The solution requires policy laboratories where whole-system reforms can be tested rapidly.

Small Island Developing States

Small Island Developing States (SIDS) have proven this model: Grenada tested climate adaptation policies in 3-year cycles that larger nations required 7-10 years to evaluate.¹⁹ Mauritius' governance capacity exceeds twelve continental African nations despite scale advantages, making it ideal for AI policy experimentation.²⁰ Such living laboratories, African AI governance will perpetually lag technological change, replicating the Malabo decade-long failure.

Agents in Emerging Virtual Economies

Africa accounts for 70% of African exchange transactions²¹, and mobile money bots manage liquidity for 500M+ users. This creates systemic national fragility: when agents fail or behave unpredictably, entire economies face cascading risks.²² More dangerously, agent capabilities are compounding exponentially—today's narrow **trading bots** become tomorrow's **autonomous market** makers capable of coordinated manipulation undetectable to human regulators. Policy frameworks for regulating steerable agent markets through sandbox environments²³ and infrastructure may assist with governing digital economic layers.

Agents In Existing Economies

Agentic Inequality, is the potential disparities in power, opportunity, and outcomes stemming from differential access to, and capabilities of, AI agents. As autonomous agents increase in capability, the cost of governance of agents of various scale exacerbate *agentic inequality*²⁴. Disparities in agent access and modelling risks accelerating power asymmetries and market impacts. Simultaneously, the declining cost and wider availability of powerful agentic platforms could lower entry barriers, allowing startups to orchestrate sophisticated operations that previously required substantial human capital²⁵.

Industrial Policy

Industrial policy has been a key part of economic development since the industrial revolution. It involves government actions to improve the business environment or change the structure of economic activity to promote growth and welfare. Industrial policy addresses this by creating a domestic ecosystem where institutions can: (1) audit agent behavior through access to underlying models, (2) modify agents for local institutional contexts, and (3) sandbox agents for oversight.

¹⁴ UNESCO : AI Needs Assessment Survey for Africa — documents institutional velocity mismatch across 54 states

¹⁵ AU (2024): Continental AI Strategy establishes five-year implementation timeline .

¹⁶ Mercatus (2018): The "pacing problem"—technology evolves exponentially while institutions adapt logarithmically—creates inherent governance mismatch for AI..

¹⁷ African Union (2024): Continental AI Strategy establishes five-year implementation timeline, demonstrating governance operates on multi-year cycles.

¹⁸ The Malabo Convention entered into force nine years after adoption

¹⁹ Adaptation Community (2017): Grenada's ICCAS pilot demonstrated SIDS enable rapid policy iteration cycles (3 years vs. 7+ years for larger states), generating empirical evidence on climate adaptation efficacy.

²⁰ Thomas et al. (2020): SIDS as Policy Laboratories, *Annual Review of Environment and Resources*—Mauritius' institutional quality enables whole-system AI governance testing impossible in larger economies.

²¹ State of the Industry Report on Mobile Money

²² Gary Gereffi et. al: Navigating industrial policy

²³ Virtual Economics

²⁴ See discussions on AI-driven inequality and systemic risk in *The dark side of AI*

²⁵ Agentic Inequality

4.1 FAIR Policy: Frontier AI Response Policy

FAIR is a 4-part program of complementary mechanisms that transform governance from reactive to adaptive. Each component addresses a specific failure point; together they create a learning system capable of governing exponential change.

- **Policy Accelerators** — small, fast-cycle units inside ministries that can test and adapt AI rules in months rather than years
- **Policy Fellowships** — fellowships and secondments that move technical experts into government without permanent career sacrifice
- **Policy SIDS** — partnerships with Small Island Developing States (SIDS) that use their smaller scale as whole-of-system testbeds for AI governance
- **Policy Industrialization** — procurement and industrial tools that turn Africa from a passive buyer of AI into an active shaper of AI markets.

Traditional strategy documents—with their five-year horizons and comprehensive visions—cannot match the pace of algorithmic change.²⁶

Program Timeline

Realistic implementation spans 2026-2030 with phased activation:²⁷

Realistic Timeline: Phased implementation 2026-2030. Early wins (ethics review, talent fellowships) build political capital for harder reforms (industrial policy, procurement coordination). SIDS pilots provide empirical evidence within 18 months, informing continental rollout.

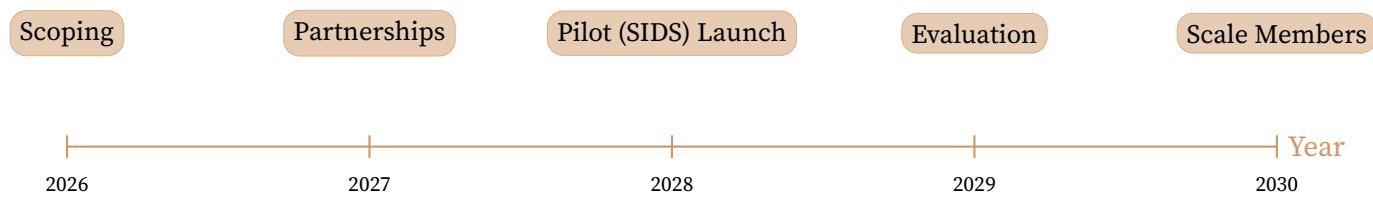


Figure 4: Program timeline (yearly progression).

Without activation, African AI governance remains reactive—perpetually catching up to technologies defined elsewhere, implementing frameworks designed for contexts that don't match African institutional realities.

With activation, African institutions become learning systems that adapt as fast as technology evolves, generate empirical evidence for what works in African contexts, and build endogenous capacity that transforms dependency into leadership.

Conclusion: From Framework to Action

The Implementation Reality

This Playbook articulates a comprehensive framework spanning infrastructure, instrumental capacity, regional innovation, and adaptive governance. Implementation requires champions—policymakers willing to commit political capital, institutions prepared to experiment and learn, funders recognizing strategic leverage over short-term metrics, and civil society ensuring governance serves broad social interests rather than narrow elite concerns.

²⁶ African Union (2024): *Continental AI Strategy*. Even continental coordination operates on multi-year implementation cycles.

²⁷ Timeline reflects institutional capacity constraints and coordination requirements documented in AU Digital Transformation Strategy implementation reviews.

Pathways for Different Actors

For Policymakers: Start with interventions matched to existing institutional capacity. Quick-win mechanisms—policy fellowships, ethics review boards—can deliver visible results within electoral cycles and build credibility for deeper, multi-year coordination and reform.

For Researchers: Comparative and quasi-experimental evaluation should determine which governance mechanisms reduce regulatory lag, scale effectively, and justify public investment. Research institutions provide continuity across political cycles and should be treated as core policy infrastructure.

For Funders: A four-year \$10M budget is an investment in durable capacity, not short-term consumption. Unlike temporary cloud access or external consultancies, shared compute, research networks, and governance mechanisms compound value over decades. Evidence from innovation economics shows high returns to such institutional investments.²⁸

For Civil Society: These interventions shape technological sovereignty and distributional outcomes. Civil society participation is essential to prevent elite capture and ensure transparency, accountability, and public legitimacy within emerging AI governance institutions.

Why Continental Coordination Matters

Individual nations implementing fragments of this Playbook will achieve modest gains—perhaps a successful mentorship program here, a policy fellowship there. *Coordinated continental implementation unlocks transformative potential that fragmented action cannot achieve*: coordination here also means deliberate cross-border resource management, such as electricity-sharing arrangements between countries like South Africa and Namibia, and water cooperation involving states like Lesotho.

The Ultimate Question

How can African countries—and Small Island Developing States (SIDS)²⁹—govern and diffuse AI to drive development, safeguard sovereignty, and ensure inclusive, equitable outcomes, while building institutional capacity that endures beyond electoral cycles?

SIDS have demonstrated that small nations can achieve extraordinary policy capacity—Mauritius and Seychelles³⁰ show that vision and sustained effort translate into tangible outcomes. African technical talent is globally competitive when adequately resourced. The central challenge is whether African policymakers, researchers, funders, and civil society will commit the resources, political capital, and long-term effort needed to transform potential into reality. This Playbook asserts that Africa's AI future is not preordained by resource scarcity, institutional gaps, or global power asymmetries. With strategic investment, policy innovation, and continental coordination, African nations can transition from being passive adopters of technology to architects of a distinctive, self-determined technological trajectory.

This playbook is a living document, designed to evolve through critique, implementation, and empirical learning. We invite feedback, constructive disagreement, and collaborative refinement.

For correspondence and feedback: playbook@equiano.institute

²⁸Clancy, M., *Basic Research Returns*.

²⁹Mauritius National AI Strategy (2018): [OECD.AI Mauritius Strategy](https://oecd.ai/mauritius-strategy)

³⁰Seychelles digital initiatives and AI integration high AI readiness